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Motivation: sampling for approximation

Given P, p
how many points do we need to sample
(5 C P), such that
1. the smallest enclosing disk

. o £ —=0.5333
contains 90% of the points in P? 15

2. for any query rectangle r

NP [N S|
ol -l <0257

with probability 0.999
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Ranges matter

rnP|  |rnS|
P 5]

Can't work for general ranges
(unless S ~ P)

Why could this work for
(axis-aligned) rectangles?

[deas:

» for 5 points: range with 4 points will
contain inner point

+ 2" subsets of P by general ranges
but much fewer by rectangles

| < 0.25 for all ranges 1? .
N
@
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Given point set P of size n and axis-aligned rectangles
as ranges, how many sets P N 1 are there?

(we ask for a tight bound)

each minimal rectangle defined by left, top, right,
bottom point
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Range space

range space: pair (X, R)
+ X isaset
» R is a subset of power set of X

example
+ X =R?
+ R: set of axis-aligned rectangles

restriction R p
- PCX

. Rip = {r N Plr € R) %

. (P, R|p) iS a range space, e.q., (ot all shown)



Examples of range spaces

(R, Z), with Z = set of closed intervals
(R?, D), with D = set of disks
R?, AR ), with AR = set of axis-aligned rectangles

(
(R%, GR), with GR = set of arbitrary oriented rectangles
(

R?,C), with C = set of closed convex sets
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VC-dimension

example: (R?, AR), with AR = set of axis-aligned rectangles
want to quantify: range space has "low complexity"

recall: Rjg :=={rNQ|r € R}

Def: Q is shattered by R if R)q is the power set of ()

Can this () be shattered by AR?

VC-dimension of a range space:
maximum size of a shattered subset of X
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A B

P={A,BYCR

@€R|p {A}GR“D {B}ERUD {A,B}ER“D

Rp| =27 shattered !
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A C B

P={A,B,C} CR
{AvB} §§ 72|P

Rip| <27 not shattered !

No set of 3 or more elements can be shattered.

VC-dimension = 2
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Example: disks as ranges

range space (R?, D), with D = set of disks

A 4 points
case 1: D € triangle(ABC)
case 2: ABC'D convex quadrilateral

B without proof:
can'tget {A, D} and {B,C'}

= VC-dimension = 3

not shatter !




Example: convex sets as ranges

range space (R?, C), with C = set of closed convex sets



Example: convex sets as ranges

range space (R?, C), with C = set of closed convex sets

ol
||||
WY
W
Y
\
\
.
W
\



Example: convex sets as ranges

range space (R?, C), with C = set of closed convex sets




Example: convex sets as ranges

range space (R?, C), with C = set of closed convex sets




Example: convex sets as ranges

range space (R?, C), with C = set of closed convex sets

— VC-dimension = o0



range space (R?, AR), with AR = set of axis-aligned rectangles

What is its VC-dimension?



range space (R?, AR), with AR = set of axis-aligned rectangles

What is its VC-dimension?



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles




Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

Er—
Lt

15

SESin



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles




Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles




Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles




Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

shattered !



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

— VC-dimension > 4

shattered !




Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4

not shatter !



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4

case 1: > 1 pointinside bounding
B rectangle

not shatter !



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4

case 1: > 1 point inside bounding
B rectangle

case 2: all points on bounding rectangle



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4

case 1: > 1 pointinside bounding
B rectangle

case 2: all points on bounding rectangle

not shatter !



Example: rectangles as ranges

range space (R?, AR), with AR = set of axis-aligned rectangles

A — VC-dimension > 4

case 1: > 1 point inside bounding
B rectangle

case 2: all points on bounding rectangle
= VC-dimension = 4

not shatter !



Summary: VC-dimension of geometric range spaces

range space VC-dimension
(R, Z), with L = set of closed intervals 2
(R?, D), with D = set of disks 3

(R?, AR), with AR = set of axis-aligned rectangles 4
(R%, GR), with GR = set of arbitrary oriented rectangles | ? > 4
(

R?,C), with C = set of closed convex sets 00
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Measure and Estimate

NP
| P|

Measure: i(7)
u(Q) = 15 = 0.6




Measure and Estimate

Measure: u(r) = |ﬂr]l]|3|

u(Q) = 15 = 0.6

Good Sample
forallr € R, ji(r) ~ u(r)
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e-samples

e-sample 5
for all ¥ € 'R and any
0<e<1

() — p(r)| < e

() = p(r)] = [9/15 — 3/6]
= 0.1




0.0
0.1
0.2

none of the above




2 _ D

B 0.1
C 0.2
D

none of the above




e-sample theorem

Let 0, e > 0 be parameters and (X, R) be a range space with finite X and
VC-dimension 0. A sample of size

1

O (— (5—|—10ggpl)>

2

is an e-sample for (X, R) with probability > 1 — ¢
(we skip the proof)
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Example from motivation

Given P,

how many points do we need to sample
(5 C P), such that

2. for any query rectangle r

"N P)| [N S| S P
with probability 0.99

O (% (4+1logg~1)),

in particular O(1) for given ¢, ¢ independent of n
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e-nets

e-sample

for all 7 € 'R and any
0<e<]

if () > € and

() = fu(r)] < € then (1) >0

weaker notion:

e-net

for all 7 € 'R and any
0<e<1]

if () > € then r contains
at least one point of




e-nets

e-sample 5: ' p

forall € 'R and any .

0<e<] : .

if () > € and

() — f(r)| < ethen fi(r) >0 e-net
for which £?

weaker notion:

e-net

for all 7 € 'R and any
0<e<1]

if () > € then r contains
at least one point of
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c-Net Theorem

Let 0, e > 0 be parameters and (X, R) be a range space with finite X and
VC-dimension 0. A sample obtained by m random draws from X with

4 4 80 16
m > max | — log —, — log —
3 w' € 3

is an e-net for (X, R) with probability > 1 — ¢

(we skip the proof, but there is a proof sketch in book)

e-sample e-net

VS
O () O (g log 2)

In short:
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e-sample (and -net) theorem use random sample.

It is also possible to construct an e-sample of size
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How large is log |R|?
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Number of small subsets

Given 0 < d < n, define ®;4(n) to be the number of subsets of size at most d
over a set of size n.

This function satisfies the following recurrence

CIDd(n) = <I>d(n — 1) -+ (I)d_l(n — 1)

Intuition: Take element x: subsets contain xX or
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Sauer’'s Lemma

If (X, R) is a range space with VC-dimension d and | X | = n, then |R| < ®4(n).

proof

Re ={Q\ 17} : QUizr; € RandQ \ {7} € R}
Rl = Ra| + R\ 2|

claim: (X \ {x}, R.) has VC-dimension at most d — 1

Thus, by induction hypothesis:

‘R‘ < @d_l(n — 1) —+ CIDd(n — 1) — @d(n)
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Which bound on O (IOiLm) does the previous lemma give for (X, R) with

n = | X | and VC-dimension §?

O (=)

0 (722)

0 (2)

VC-dmé = |R|<n?

What does |R| = O(n%) imply about the VC-dimension?
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Shattering Dimension

Given a range space S = (X, R), its shatter function wg(m) is the maximum
number of sets that might be created by S when restricted to subsets of size m.
Formally,

ms(m) = max R 5]
| B|=m

The shattering dimension of S is the smallest d such that
ms(m) = O(m?), for all m

Sauer’s lemma: shattering dimension < VC-dimension
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Examples of Shattering Dimension

range space (R?, D), with D = set of disks

When restricted to n points, how
. many ranges are there?

consider a disk

canonical disk for points in range:
o smallest enclosing disk

uniquely determined by < 3 points
on boundary

Rip| < ®4(n) <n’

shattering dim < 3
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Shattering dimension of geometric range spaces

shattering dimension =~ how many points determine a range
range space shattering dimension
(R, Z), with L = set of closed intervals 2
(R?, D), with D = set of disks 3
(R?, AR), with AR = set of axis-aligned rectangles 4
(R?, GR), with GR = set of arbitrary oriented rectangles | 5
(

R2,C), with C = set of closed convex sets -

Can be easier to compute than VC-dimension
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Shattering dimension vs VC-dimension

VC-dimension 0
shattering dimension d
Sauer's lemma: d < ¢

claim: & < O(dlog d)

Consider largest shattered N C X : 6 = | V|
25 — |R|N| < 65d

0 < log(c)+ dlogd
log o < log(log(c) + dlogd) = O(log(dlogd)) = O(log d + loglog )

0 < O(dlogd) = 0O(dlogd)



Summary

range space (X, R)

VC-dimension 0
examples of geometric range spaces

e-sample of size O (

1 1
e-net of size O (Moge tHlog(y ))

applications for geometric approximation

shattering dimension d
d <o <dlogd



