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Motivation: sampling for approximation

P

S

Given P ,

how many points do we need to sample
(S ⊂ P ), such that

1. the smallest enclosing disk
contains 90% of the points in P ?

2. for any query rectangle r∣∣∣ |r∩P |
|P | − |r∩S|

|S|

∣∣∣ ≤ 0.25 ?

8
15

= 0.5333

3
6
= 0.5

with probability 0.999
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Ranges matter

P

S

∣∣∣ |r∩P |
|P | − |r∩S|

|S|

∣∣∣ ≤ 0.25 for all ranges r?

Can’t work for general ranges
(unless S ≈ P )

Question: Why could this work for
(axis-aligned) rectangles?

Ideas:
• for 5 points: range with 4 points will

contain inner point

• 2n subsets of P by general ranges
but much fewer by rectangles
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Quiz

Given point set P of size n and axis-aligned rectangles
as ranges, how many sets P ∩ r are there?

A O(n2)

B O(n3)

C O(n4)

(we ask for a tight bound)

each minimal rectangle defined by left, top, right,
bottom point
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Range space
range space: pair (X,R)

• X is a set
• R is a subset of power set of X

example
• X = R2

• R: set of axis-aligned rectangles

restriction R|P
• P ⊆ X

• R|P := {r ∩ P |r ∈ R}
• (P,R|P ) is a range space, e.g., (not all shown)



Examples of range spaces

(R, I), with I = set of closed intervals

(R2,AR), with AR = set of axis-aligned rectangles

(R2,GR), with GR = set of arbitrary oriented rectangles

(R2, C), with C = set of closed convex sets

(R2,D), with D = set of disks
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VC-dimension

example: (R2,AR), with AR = set of axis-aligned rectangles

want to quantify: range space has "low complexity"

recall: R|Q := {r ∩Q|r ∈ R}

Def: Q is shattered by R if R|Q is the power set of Q

Question: Can this Q be shattered by AR?

Q

no
VC-dimension of a range space:
maximum size of a shattered subset of X
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A

shattered !

B

P = {A,B} ⊆ R

∅ ∈ R|P {A} ∈ R|P {B} ∈ R|P {A,B} ∈ R|P

|R|P | = 2|P |
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Example (R, I)

A BC

P = {A,B,C} ⊆ R

{A,B} /∈ R|P

|R|P | < 2|P | not shattered !

VC-dimension = 2

No set of 3 or more elements can be shattered.
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not relevant, since VC-dimension = maximum size of
shattered subset
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Example: disks as ranges

not shatter !

A

B

C

D

range space (R2,D), with D = set of disks

4 points
case 1: D ∈ triangle(ABC)

case 2: ABCD convex quadrilateral
without proof:
can’t get {A,D} and {B,C}

⇒ VC-dimension = 3
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range space (R2, C), with C = set of closed convex sets

⇒ VC-dimension = ∞
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not shatter !

A

B

C

D E

range space (R2,AR), with AR = set of axis-aligned rectangles

case 1: ≥ 1 point inside bounding
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Example: rectangles as ranges

not shatter !

A

B

C

D E

range space (R2,AR), with AR = set of axis-aligned rectangles

case 1: ≥ 1 point inside bounding
rectangle
case 2: all points on bounding rectangle

⇒ VC-dimension = 4

⇒ VC-dimension ≥ 4



Summary: VC-dimension of geometric range spaces

(R, I), with I = set of closed intervals

(R2,AR), with AR = set of axis-aligned rectangles

(R2,GR), with GR = set of arbitrary oriented rectangles

(R2, C), with C = set of closed convex sets

(R2,D), with D = set of disks

range space VC-dimension

2

3

4

? ≥ 4

∞
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Measure and Estimate

Measure: µ(r) = |r∩P |
|P |

Good Sample S:
for all r ∈ R, µ̂(r) ≈ µ(r)

P

Estimate: µ̂(r) = |r∩S|
|S|

S

µ̂(Q) = 3
6 = 0.5

µ(Q) = 9
15 = 0.6

r
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ε-samples

ε-sample S:
for all r ∈ R and any

|µ(r)− µ̂(r)| ≤ ε

r

P

0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| = |9/15− 3/6|
= 0.1

S



Quiz

A 0.0

B 0.1

C 0.2

|µ(r)− µ̂(r)| = . . . ?
P

S

D none of the above



Quiz

A 0.0

B 0.1

C 0.2

|µ(r)− µ̂(r)| = . . . ?
P

S

D none of the above

2
6 = 5

15



ε-sample theorem

Let φ, ε > 0 be parameters and (X,R) be a range space with finite X and
VC-dimension δ. A sample of size

O

(
1

ε2
(
δ + logφ−1

))
is an ε-sample for (X,R) with probability ≥ 1− φ

(we skip the proof)
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Example from motivation

P

S

Given P ,

how many points do we need to sample
(S ⊂ P ), such that

2. for any query rectangle r∣∣∣ |r∩P |
|P | − |r∩S|

|S|

∣∣∣ ≤ 0.25 ?

with probability 0.999= 1−φ

= ε

δ = 4

answer: O
(

1
ε2 (4 + log ϕ−1)

)
,

in particular O(1) for given ε, φ independent of n
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r

P

S

ε-net S:
for all r ∈ R and any

if µ(r) ≥ ε then r contains
0 ≤ ε ≤ 1

at least one point of S

ε-sample S:
for all r ∈ R and any

if µ(r) ≥ ε and
0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| ≤ ε then µ̂(r) > 0
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ε-nets

r

P

S

ε-net S:
for all r ∈ R and any

if µ(r) ≥ ε then r contains
0 ≤ ε ≤ 1

at least one point of S

ε-sample S:
for all r ∈ R and any

if µ(r) ≥ ε and
0 ≤ ε ≤ 1

|µ(r)− µ̂(r)| ≤ ε then µ̂(r) > 0

weaker notion:

Question: ε-net
for which ε?



ε-Net Theorem

Let φ, ε > 0 be parameters and (X,R) be a range space with finite X and
VC-dimension δ. A sample obtained by m random draws from X with

m ≥ max

(
4

ε
log

4

φ
,
8δ

ε
log

16

ε

)
is an ε-net for (X,R) with probability ≥ 1− φ

(we skip the proof, but there is a proof sketch in book)



ε-Net Theorem

Let φ, ε > 0 be parameters and (X,R) be a range space with finite X and
VC-dimension δ. A sample obtained by m random draws from X with

m ≥ max

(
4

ε
log

4

φ
,
8δ

ε
log

16

ε

)
is an ε-net for (X,R) with probability ≥ 1− φ

in short: ε-sample
O
(

δ
ε2

) ε-net
O
(
δ
ε log

1
ε

)vs

(we skip the proof, but there is a proof sketch in book)
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Motivation: sampling for approximation

P

S

Given P , how many points do we need
to sample (S ⊂ P ), such that
the smallest enclosing disk contains
90% of the points in P ?
with probability 0.999 = 1−φ

ε = 0.1

Question: Which range space?

If 10% of P outside a circle, then there
should be a point of S outside the circle
range space: (R2,Dc), with Dc the set of
complements of disks.
range space and its complement have same VC-dimension

δ = 3

|S| = 1758
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ε-sample theorem, revisited

ε-sample (and -net) theorem use random sample.

It is also possible to construct an ε-sample of size
O( log |R|

ε2 ) deterministically.

Question: How large is log |R|?



Sauer’s Lemma
bounding |R|
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Number of small subsets

Φd(n) =
(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
d

)
=

∑d
i=0

(
n
i

)
This function satisfies the following recurrence

Φd(n) = Φd(n− 1) + Φd−1(n− 1)

≤ nd

Given 0 ≤ d ≤ n, define Φd(n) to be the number of subsets of size at most d
over a set of size n.

Intuition: Take element x: subsets don’t contain x or do
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Sauer’s Lemma

Induction on d and n

Base: d = 0 and n = 0 trivially true

If (X,R) is a range space with VC-dimension d and |X| = n, then |R| ≤ Φd(n).

proof
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Sauer’s Lemma

Rx = {Q \ {x} : Q ∪ {x} ∈ R and Q \ {x} ∈ R}

R \ x = {Q \ {x} : Q ∈ R}

Range r with r ∪ {x} ∈ R and r \ {x} ∈ R charged twice ?!

Charge each range of R to corresponding range in R \ {x}

If (X,R) is a range space with VC-dimension d and |X| = n, then |R| ≤ Φd(n).

proof

Step:

claim: |R| = |Rx|+ |R \ x|

These are exactly elements in Rx!



Sauer’s Lemma

|R| = |Rx|+ |R \ x|

claim: (X \ {x},Rx) has VC-dimension at most d− 1
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Sauer’s Lemma

|R| = |Rx|+ |R \ x|

claim: (X \ {x},Rx) has VC-dimension at most d− 1

If B ⊂ X \ {x} is shattered by Rx, then
B ∪ {x} is shattered in R

If (X,R) is a range space with VC-dimension d and |X| = n, then |R| ≤ Φd(n).

proof
Rx = {Q \ {x} : Q ∪ {x} ∈ R and Q \ {x} ∈ R}

(X \ {x},Rx) has smaller VC-dim. than (X,R)
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|R| = |Rx|+ |R \ x|

claim: (X \ {x},Rx) has VC-dimension at most d− 1

|R| ≤ Φd−1(n− 1) + Φd(n− 1)
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Sauer’s Lemma

|R| = |Rx|+ |R \ x|

claim: (X \ {x},Rx) has VC-dimension at most d− 1

|R| ≤ Φd−1(n− 1) + Φd(n− 1) = Φd(n)

If (X,R) is a range space with VC-dimension d and |X| = n, then |R| ≤ Φd(n).

proof
Rx = {Q \ {x} : Q ∪ {x} ∈ R and Q \ {x} ∈ R}

Thus, by induction hypothesis:
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Quiz

Which bound on O
(

log |R|
ε2

)
does the previous lemma give for (X,R) with

n = |X| and VC-dimension δ?

A O
(

δ
ε2

)
B O

(
δ logn

ε2

)
C O

(
δn
ε2

)
VC-dim δ ⇒ |R| ≤ nδ

What does |R| = O(nd) imply about the VC-dimension?



Shattering dimension



Shattering Dimension

πS(m) = max
B⊂X
|B|=m

|R|B |

Given a range space S = (X,R), its shatter function πS(m) is the maximum
number of sets that might be created by S when restricted to subsets of size m.
Formally,
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Shattering Dimension

πS(m) = max
B⊂X
|B|=m

|R|B |

Given a range space S = (X,R), its shatter function πS(m) is the maximum
number of sets that might be created by S when restricted to subsets of size m.
Formally,

The shattering dimension of S is the smallest d such that
πS(m) = O(md), for all m

Sauer’s lemma: shattering dimension ≤ VC-dimension
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Examples of Shattering Dimension

range space (R2,D), with D = set of disks

Question: When restricted to n points, how
many ranges are there?

consider a disk
canonical disk for points in range:
smallest enclosing disk

uniquely determined by ≤ 3 points
on boundary

|R|P | ≤ Φd(n) ≤ n3

shattering dim ≤ 3
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Shattering dimension of geometric range spaces
shattering dimension ≈ how many points determine a range

(R, I), with I = set of closed intervals

(R2,AR), with AR = set of axis-aligned rectangles

(R2,GR), with GR = set of arbitrary oriented rectangles

(R2, C), with C = set of closed convex sets

(R2,D), with D = set of disks

range space shattering dimension

3

–

2

4

5

Can be easier to compute than VC-dimension
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Shattering dimension vs VC-dimension

VC-dimension δ

shattering dimension d

Sauer’s lemma: d ≤ δ

claim: δ ≤ O(d log d)

Consider largest shattered N ⊂ X : δ = |N |
2δ = |R|N | ≤ cδd

δ ≤ log(c) + d log δ

log δ ≤ log(log(c) + d log δ) = O(log(d log δ)) = O(log d+ log log δ)

δ ≤ O(d log δ) = O(d log d)



Summary

range space (X,R)

VC-dimension δ

shattering dimension d

d ≤ δ ≤ d log d

ε-sample of size O
(

δ+log(φ−1)
ε2

)
ε-net of size O

(
δ log ε−1+log(φ−1)

ε

)
examples of geometric range spaces

applications for geometric approximation


